

A templatic account of three Middle Scots alliterative poems

Patrik Bye, Nord University

In the last few decades of work on anisosyllabic Middle English alliterative meter, significant evidence has amassed that also unstressed syllables are regulated (Duggan 1986, Cable 1991, Yakovlev 2008). Despite this progress, a fully templatic account along the lines of generative metrics (Halle and Keyser 1966, Hanson and Kiparsky 1996) has remained elusive.

Recently, however, Bye (2025) has proposed such a templatic account of Middle English alliterative meter based on a deductive scansion of *Sir Gawain and the Green Knight* (*SGGK*) according the following assumptions about the template and the mapping from beats to syllables:

1. the meter is fundamentally an iambic tetrameter: [(W S) (W S)] [(W S) (W S)];
2. each metrical position or beat (W or S) is internally split, which universally yields a [sw] ‘mini-trochée’ (Prince 1989): [([sw]w [sw]s) ([sw]w [sw]s)] [([sw]w [sw]s) ([sw]w [sw]s)];
3. by default, each half-beat (‘s’ or ‘w’) maps onto a syllable or, failing that, a single syllable may realise a *whole* beat (W or S) on its own (a ‘fusion’ of half-beats).

Combined with the limited possibility of anacrusis at the beginning of the line (one minor word syllable only) and catalexis of a whole beat in the half-line (particularly the second half-line), these principles are sufficient to account for the range of attested line types in *SGGK*, with their varying numbers of syllables. In contrast to previous accounts, where they are assumed to be metrically inert, it is apparent that much of the rhythm is carried by sequences of two minor word monosyllables in trochaic groupings like *for to* or *in the*, as is also clearly the case in syllabically regular Middle High German poems like the *Nibelungenlied* (Vennemann 1995). The price of viewing the meter in this way is abandoning the traditional assumption that alliteration plays a constitutive role.

In this talk, we extend this line of analysis to the Middle Scots alliterative tradition (Mackay 1975, McClure 2008), which has so far figured little in debates regarding the nature of Germanic meter. We examine in particular its three most well known exemplars: *The Buke of the Howlat* (*BH*; mid 15c; Hanna 2014), *Golagros and Gawane* (*GG*; late 15c; Hanna 2008), and *Rauf Coilyear* (*RC*; late 15c; Bawcutt and Riddy 1987).

Apart from a difference between *SGGK* and the Scots corpus in the distribution of catalectic positions, the major difference is the greater prevalence in the Scots poems of ‘fusion’, including at the end of the line—going against what Russom (2004) dubs the ‘final trochée requirement’ (FTR). The difference is ascribed here to the time of composition relative to the loss of final *-e* and the resulting conditions on what Hanson and Kiparsky (1996) term FIR: after the loss of final *-e* created a new class of monosyllables, fusion allows the poet to access more of their lexicon.

Although *SGGK* was also composed in the mid to late 14c after the loss of final *-e*, Cable (1991) argues on the basis of an analysis of *Pearl* that the distribution of etymological disyllables (including borrowings from Old French and Old Norse) in line-final position implies that the *Gawain*-poet must have had knowledge of the earlier distribution of final *-e*, perhaps as part of an archaic register kept alive through poetic performances dating back to the early 14c—a couple of generations before. Yakovlev (2008) further shows that restoring inflectional *-e* (e.g. dative and weak adjective endings) strengthens Cable’s case for an active FTR in the *Gawain*-poet’s corpus.

For Middle Scots, though, the loss of final *-e* by the early 14c (Aitken 2002) predates the composition of the alliterative corpus by more than a century, making any survival of etymological disyllabicity as part of a poetic register far less plausible. This is evidenced by the many end-of-line etymological monosyllables, e.g. *was* (*BH* 237), *auld* (*BH* 291); *knight* (*GG* 614), *wight* (*GG* 659, < ON *víg*); *bad* (*RC* 113), *gle* (*RC* 953). Given fusion tends to obscure the underlying pattern, we conclude with some reflections on the learnability of abstract metrical templates.